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This work reports results of numerical simulations of viscous incompressible flow past
a sphere. The primary objective is to identify transitions that occur with increasing
Reynolds number, as well as their underlying physical mechanisms. The numeri-
cal method used is a mixed spectral element/Fourier spectral method developed
for applications involving both Cartesian and cylindrical coordinates. In cylindrical
coordinates, a formulation, based on special Jacobi-type polynomials, is used close
to the axis of symmetry for the efficient treatment of the ‘pole’ problem. Spectral
convergence and accuracy of the numerical formulation are verified. Many of the
computations reported here were performed on parallel computers. It was found
that the first transition of the flow past a sphere is a linear one and leads to a
three-dimensional steady flow field with planar symmetry, i.e. it is of the ‘exchange of
stability’ type, consistent with experimental observations on falling spheres and linear
stability analysis results. The second transition leads to a single-frequency periodic
flow with vortex shedding, which maintains the planar symmetry observed at lower
Reynolds number. As the Reynolds number increases further, the planar symmetry is
lost and the flow reaches a chaotic state. Small scales are first introduced in the flow
by Kelvin–Helmholtz instability of the separating cylindrical shear layer; this shear
layer instability is present even after the wake is rendered turbulent.

1. Introduction
Extensive steady-state axisymmetric numerical simulations of flow past a sphere

were reported by Fornberg (1988), who observed that the wake length and separation
angle vary approximately as log(Re) for Reynolds number, Re, greater than about
75. Experimental results for flow past a sphere have been reported by Taneda (1956)
and Nakamura (1976), for Re up to approximately 200; these experiments report that
a closed recirculation zone first forms at approximately Re = 20–25 and the flow
stays steady and axisymmetric up to at least Re of about 130 (Taneda 1956). Taneda
(1956) found wake unsteadiness above Re = 130. Other more recent experimental
observations (Wu & Faeth 1993; Magarvey & Bishop 1965) find the flow to be steady
and axisymmetric up to Re ≈ 210.

Linear stability analysis results (Kim & Pearlstein 1990) suggest that the first
transition of the flow past a sphere occurs at Re of about 175 and is a Hopf
bifurcation characterized by a low frequency. This result disagrees with more recent
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LSA results by Natarajan & Acrivos (1993), who found that the first transition
of this flow occurs at Re1 = 210 and is of the ‘exchange of stability’, or regular
bifurcation, type. In contrast to the flow past a circular cylinder where the first
transition is a Hopf bifurcation from a two-dimensional steady to a two-dimensional
unsteady (periodic) flow (resulting in a time-periodic Kármán vortex street), this
transition is from an axisymmetric steady to a three-dimensional steady flow. The
most unstable azimuthal mode is the first azimuthal mode. The characteristics of the
resulting steady flow field, which exists and is stable for Re between approximately
210 and 270, correspond to those of a ‘double-threaded’ wake, reported in the falling
sphere experiments of Magarvey & Bishop (1965) and Nakamura (1976). The double-
threaded wake consists of two streamwise vortices opposite in sign which extend to
infinity and appear in the experiment as two dye threads emanating from the end
of the recirculation region. Its effect is most easily demonstrated by the curved non-
vertical path of a sphere falling in a quiescent fluid. In this range of Re, the flow
is symmetric around a plane that includes the axis of symmetry, but the flow is not
axisymmetric. This planar symmetry is also maintained at higher Reynolds numbers;
its precise orientation is random, presumably determined by perturbations in the
incoming flow.

Natarajan & Acrivos (1993) find that at Re2 = 277.5 a second mode becomes
unstable, always with respect to the steady axisymmetric flow. From their work,
it is evident that there exist two eigenvalues, one with zero and another one with
non-zero frequency, which are well separated from the rest of the spectrum of the
first azimuthal mode m = 1. The former eigenvalue crosses the imaginary axis at
Re1, whereas the latter becomes supercritical at Re2. This latter mode is stable below
Re2 but it may be related to low-amplitude sustained oscillations, without distinct
vortex shedding, often reported in experiments below Re = 270. Such wave-like
oscillations have been reported by Möller (1938) for Re > 200, by Magarvey &
Bishop (1965) for 270 6 Re 6 290, and in the experimental work of Sakamoto
& Haniu (1990, 1995) for Re < 300. This second instability was also investigated
experimentally by Provansal & Ormières (1998) and Ormières, Provansal & Barrantes
(1998), who attempted to quantify the Landau equation exponents for this transition
by performing water tunnel visualization experiments. Recently, Johnson & Patel
(1999), have performed both experiments and numerical simulations based on a finite
volume scheme for Re up to 300 and found results that are in agreement with these
observations.

Experimental observations at higher Re (just above 300) suggest that the flow
becomes time periodic. The basic wake structure consists of a succession of intercon-
nected vortex loops as observed in visualization experiments by Magarvey & Bishop
(1961), Achenbach (1974) and Sakamoto & Haniu (1990). In particular, Achenbach
(1974) reports that the flow at about Re = 300 maintains planar symmetry around
the plane on which the shedding process is initiated, even though it has lost its axial
symmetry. To demonstrate this, he includes a sketch which shows that the vortex
loops are always shed from the sphere with the same orientation.

Sakamoto & Haniu (1990, 1995) report that the flow undergoes another transition
from a one-frequency to an almost chaotic system for Re > 420. In his experiments,
Achenbach (1974) reports two values for the Strouhal number at Re = 500, corre-
sponding to two different spheres and blocking ratios; the first is about 0.163 and
corresponds to a blockage of about 0.6% and the second is about 0.174 and cor-
responds to blockage of about 2.6%. His experiments were performed in a round
pipe, like our simulations. Kim & Durbin (1988) report a Strouhal number of 0.171
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for Re = 500 and their blockage ratio is less than 0.01% for this Reynolds num-
ber; their experiments were performed in a wind tunnel of rectangular cross-section.
Finally, Sakamoto & Haniu (1990) find a Strouhal number between 0.175 and 0.18
for Re = 500. Some three-dimensional simulations in this Re range are reported
by Shirayama (1992), and Gebing (1994) for compressible flow at Mach number
of 0.4.

Experimentally, smaller scales appear and a more chaotic flow occurs when the
Reynolds number exceeds 800. The basic wake structure seems to be similar to the
one at Re = 500; however, a Kelvin–Helmholtz-like instability of the cylindrical
shear layer that results from the separation of the boundary layer on the sphere
creates an additional instability mode with a different characteristic frequency. In
the experiments of Kim & Durbin (1988), two frequencies are reported for around
Re > 800. At Re = 1000, the lower frequency is found to be between 0.187 and
0.202 and the higher frequency mode is measured to be between 0.33 and 0.37 (see
figure 2 in Kim & Durbin 1988). In his experiments, Achenbach (1974) regarded
all the observed frequencies as being due to vortex shedding and only measured
the higher Strouhal frequency mode. He reports a Strouhal number of about 0.39
at Re = 1000. Sakamoto & Haniu (1990, 1995) report a value between 0.195 and
0.205 for the vortex shedding Strouhal number, and a value of about 0.29–0.34 for
the second higher mode. Since the second frequency is associated with the instability
of the shear layer, it tends to increase with Reynolds number, or equivalently with
decreasing thickness of the layer, because the shear layer becomes unstable to smaller
wavelengths. The frequency was found by Kim & Durbin (1988) to increase as Re0.75.
Finally, average and RMS velocity profiles were measured by Wu & Faeth (1993) for
Re up to 960.

The current work is concerned with the computational investigation of viscous
incompressible flow past a sphere. The approach we have taken is the detailed
study of the underlying physical mechanisms of the transition to turbulence for this
prototypical wake flow, using direct numerical simulation (DNS) based on spectral-
type methods. A mixed spectral element/Fourier spectral method is used, which takes
advantage of the homogeneity in the azimuthal direction in cylindrical coordinates,
or in the spanwise direction in Cartesian coordinates. An approach based on special
Jacobi-type polynomials is used on the axis of symmetry for the treatment of the
‘pole’ problem in cylindrical coordinates. This approach, when used in the context
of spectral elements, leads to an efficient and spectrally accurate way of removing
geometrical singularities and can be used for the simulation of three-dimensional
flows in general axisymmetric geometries. A description of the numerical formulation
used in this work is given in the following section.

Results from our investigation of the flow past a sphere, for Re from 25 up to
1000, are reported. The Reynolds number is defined in terms of the diameter of the
sphere, D, the free-stream velocity, Uo, and the kinematic viscosity, ν. Therefore, all
length scales are non-dimensionalized by D, all velocities by Uo, and all time scales by
D/Uo. The results are presented for increasing Reynolds number, starting from steady
axisymmetric flow. The first transition that the flow undergoes from axisymmetry to
three-dimensionality is analysed both in terms of its early stages and in terms of
the final resulting flow field. Extensive comparisons with results from linear stability
analysis and experiments are performed. The transition to time dependence and onset
of vortex shedding is successfully uncovered and simulated. Shedding patterns, the
appearance of small scales, and the onset of turbulence are thoroughly investigated
and compared with experiments.
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2. Numerical formulation
The governing equations are the incompressible Navier–Stokes equations, which in

rotational form are
∂v

∂t
+ ω × v = −∇P + ν∇2v (2.1a)

∇ · v = 0 in Ω, (2.1b)

where v = (u, v, w) is the velocity field (where u, v, w refer to streamwise, radial and
azimuthal velocity components, respectively), P = p + 1

2
v · v is the total pressure,

ω = ∇× v is the vorticity, and ν is the kinematic viscosity. The discretization of the
equations is performed using spectral methods and employs a Fourier series expansion
in the azimuthal direction:

u(z, r, φ, t) =

M−1∑
m=0

um(r, z, t)eimφ, (2.2)

where m represents azimuthal Fourier modes. Substituting (2.2) in the governing
equations, and applying the change of variables

ṽm = vm + iwm, w̃m = vm − iwm, (2.3)

gives

∂um

∂t
+Fm (ω × v)z = −∂Pm

∂z
+ ν

(
∇2
rz − m2

r2

)
um, (2.4a)

∂ṽm

∂t
+ F̃m (ω × v)r = −

(
∂Pm

∂r
− m

r
Pm

)
+ ν

(
∇2
rz − (m+ 1)2

r2

)
ṽm, (2.4b)

∂w̃m

∂t
+ F̃m (ω × v)φ = −

(
∂Pm

∂r
+
m

r
Pm

)
+ ν

(
∇2
rz − (m− 1)2

r2

)
w̃m, (2.4c)

where

∇2
rz =

∂2

∂z2
+

1

r

∂

∂r

(
r
∂

∂r

)
,

F̃m (ω × v)r =Fm (ω × v)r + iFm (ω × v)φ ,
F̃m (ω × v)φ =Fm (ω × v)r − iFm (ω × v)φ ,

and Fm refers to a Fourier transform in φ. The coordinate singularity at r = 0 is
removable, since it can be shown that the behaviour of the Fourier coefficients of the
velocity components close to the axis is

(um, vm, wm) ∝ (βrm, γrm−1, iγrm−1), (2.5)

where β and γ are constants (Orszag 1974; Batchelor 1967). It can be verified that
ṽm = vm + iwm is zero at r = 0 for all m and scales like vm + iwm ∝ rm+1, a result
equivalent to the fact that the vorticity is regular at r = 0. On the other hand, the
variable w̃m = vm − iwm has a non-zero value at r = 0 for m = 1; however, the
coefficient of the 1/r2 terms in (2.4c) for m = 1 is zero and so the singularity is
removed.

Numerically, however, there are still terms in the equations where both the numer-
ator and the denominator go to zero at the same rate close to the axis, which means
that quantities of indeterminate form have to be treated. To do this, a special form
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of Jacobi polynomials is used as an expansion basis in the r-direction adjacent to the
axis, which in conjunction with L’Hôpital’s rule results in a removal of the geometrical
singularity, thus preserving the spectral convergence rate (E. Rønquist 1991, personal
communication; Leonard & Wray 1982). The set of polynomials employed close to
the axis correspond to the Jacobi polynomials P (0,1), with associated weights which
are zero at r = 0.

For the time integration of (2.4a), (2.4b), (2.4c), we use a fractional step method,
in conjunction with a mixed explicit/implicit stiffly stable scheme of second order
of accuracy in time (Karniadakis, Israeli & Orszap 1991). A consistent Neumann
boundary condition is used for the pressure, based on the rotational form of the
viscous term, which nearly eliminates splitting errors at solid (Dirichlet) velocity
boundaries (Tomboulides, Israeli & Karniadakis 1989). The resulting Helmholtz
equation is of the form

1

r

∂

∂r

(
r
∂

∂r
um

)
− m2

r2
um − λ2um = g, (2.6)

where um stands for either the velocity or pressure Fourier mode, and m is an azimuthal
wavenumber. The constant λ2 is 0 for the pressure and γ0/(ν∆t) for the velocity
equations (γ0 being a coefficient associated with the order of the time-integrating
scheme used).

The spatial discretization of the Helmholtz equation (2.6) is performed using
two-dimensional spectral elements (Patera 1984; Maday & Patera 1987). In the
elements adjacent to the axis of symmetry we use Lagrange interpolants based on
zeros of Jacobi (0, 1) polynomials, whereas in the rest of the elements Legendre–
Lagrangian interpolants are employed (Tomboulides 1993). The resulting matrices
for the numerical solution of the two-dimensional Helmholtz equations (2.6), are
essentially block diagonal and can be solved efficiently by a static condensation
technique (with operation count approximately M×Ke×N2, where N is the number
of grid points inside a single element and Ke the total number of elements (typically
Ke 6 200 and N 6 15). This approach was used only for the zeroth-pressure Fourier
mode P0 because of slow convergence properties when iterative techniques were used.
The Helmholtz equations for the rest of the unknowns, i.e. all Pm, for m 6= 0 and all
velocity modes, were solved using preconditioned conjugate gradient iterative solvers.
The code is fully parallelized and most high-Re computations were performed on an
IBM PVS parallel computer.

A demonstration of the accuracy and convergence rate of the present methodology
for axisymmetric geometries is given in figure 1 in terms of the logarithm of the
maximum error in the vorticity along the axis for the flow past a sphere at Re = 25,
as the polynomial order N of the discretization is increased. The vorticity along the
axis for an axisymmetric flow is zero; this condition, however, is not imposed strongly,
but is satisfied naturally through the convergence process. It can be observed in figure
1 that the convergence of the error with increasing polynomial order is exponential.

2.1. Simulation parameters

The simulations were performed on a mesh which extends 4.5 diameters upstream
and radially outwards from the centre of the sphere, corresponding to a blockage
(area) ratio of about 1.2%. The boundary condition at the upstream and outer
radial boundaries is a constant streamwise velocity of Uo = 1, with the sphere being
stationary. This is equivalent to the sphere being towed inside a circular pipe with
diameter D = 9D (where D is the diameter of the sphere). The radial and upstream
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Figure 1. Convergence of maximum vorticity along the axis to zero for flow past a sphere at
Re = 25 with order N.

extent of the computational domain was selected by considering the rate at which
perturbations decay away from the body. It is well known (Batchelor 1967) that
perturbations due to the existence of the sphere decay away from the sphere at a
rate 1/r3, where r is the distance from the centre of the sphere. This is a factor of
r smaller than the corresponding decay of perturbations due to a two-dimensional
body (i.e. a circular cylinder) which is 1/r2. As a result, at x = −4.5 the velocity is
only 0.1% different from the free-stream velocity, according to potential theory. The
same argument also holds in the radial direction. In addition, blockage factors of the
order of 1% are considered negligible when performing experiments for this flow, as
mentioned by Kim & Durbin (1988) and Achenbach (1974).

In the downstream direction the computational domain extends 25 diameters from
the sphere centre. The boundary conditions used at the downstream boundary are
of outflow type, Neumann on velocity components and Dirichlet for the pressure, as
described in Tomboulides (1993). The Neumann boundary conditions for the velocity
components are only enforced in the weak sense, and the streamwise derivatives of
the velocity components at the outflow boundary do not have to be identically zero.
This is the main reason why this type of outflow boundary condition works well with
methods based on the variational formulation and does not generate numerically
induced oscillations. On the other hand, the Dirichlet condition on the pressure, i.e.
p = 0 at the outflow, is equivalent to setting the normal component of the stress tensor
to zero at the outflow (−p+ 2µ∂u/∂n ≈ −p = 0, for small values of the viscosity), as
described in Gresho & Sani (1987). Numerical experiments were performed with both
types of conditions on the pressure and the results upstream were virtually unchanged.
An alternative approach based on the parabolized equations, in a sponge layer close
to the outflow, was also employed and again the results outside this sponge layer were
not affected. Simulations with a domain length of 20 diameters were also performed
and it was found that the outflow boundary did not have any effects upstream. The
main reason for extending the domain to 25 diameters was to have a minimum of 3
to 4 vortical structures shed from the sphere within the domain.

The z, r projection of a typical spectral element mesh used for the simulations
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(a)

(b)

Figure 2. Typical SEM mesh for flow past a sphere consisting of 246 elements: (a) elements close
to the sphere, (b) complete mesh.

reported here is plotted in figure 2, which consists of 246 elements. The three-
dimensional domain is obtained by a 360◦ rotation of the mesh shown in that figure.
The close-up of the element arrangement close to the sphere shows the increased
resolution in that area, chosen to resolve the steepening of the boundary layer. The
number of points inside all elements was either 7 × 7, for the low-Re axisymmetric
simulations, 9× 9 for all three-dimensional simulations up to Re = 500 and 11× 11
for most simulations at Re = 1000. The resolution used was more than adequate
to resolve all scales, both in the boundary layer and in the near wake, at all Re.
Two measures of accuracy were considered in order to locally increase resolution
when needed by adding more elements or by increasing the number of collocation
points within each element. One is the total L2 divergence of the velocity field,
which is a measure of how well the velocity gradients are captured. This value was
maintained below 10−4 for all simulations. Another measure is the vorticity, which at
low resolutions contains jumps at element boundaries. The only case where resolution
was marginal was at Re = 1000; however, we believe that our simulations do capture
the details of the flow both qualitatively and quantitatively.

The number of azimuthal angle increments (double the number of Fourier modes)
used was 16 for simulations up to Re = 300, and was doubled to 32 for the rest of the
simulations up to Re = 500. All three-dimensional simulations up to Re = 500 were
initialized with the steady axisymmetric flow corresponding to the same Reynolds
number together with a perturbation in the m = 1 Fourier mode. The simulation
at Re = 1000 was restarted from the results of the Re = 500 run and the number
of azimuthal angle increments used in the early stages of this computation was 32;
however, soon after the energy in the high end of the spectrum started increasing
due to the generation of smaller scales and in order to maintain at least 4 decades
of decay in the spectrum the resolution in the azimuthal direction for this Re was
doubled to 64. With this increase the tail of the energy spectrum is reduced by at
least a factor of 10−4, and that of the dissipation is reduced by at least a factor of
10−3 or so, which experience has proven to be adequate to provide confidence in our
results. After that the simulation proceeded without need for any further refinement.

Since the boundary layer on the sphere does not become turbulent until a Reynolds
number of the order of 3 × 105 (based on the diameter) is reached, estimates of the
boundary layer thickness were derived from the laminar boundary layer solution
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Re 100 300 500 1000

δ 0.113 0.065 0.05 0.035
Lreq 0.8 0.46 0.35 0.25
Lused 0.167 0.167 0.167 0.15

Table 1. Boundary layer and element thickness.

Re 25–300 500 1000

∆t 0.005 0.003 0.0025

Table 2. Time steps used for simulations at different Reynolds number.

for axisymmetric bodies (Schlichting 1979). Values of the smallest boundary value
thickness for Reynolds numbers from 100 to 1000 are given in table 1 together with
an estimate of the element thickness required for adequate resolution of the gradient
there, Lreq , was obtained using the estimate N ≈ 3/

√
δ/L (Gottlieb & Orszag 1977),

for a polynomial degree 9.
Also shown in the third row of the matrix is the actual thickness of the layer of

elements which contains the boundary layer. It can be concluded from the table that
the mesh size used close to the boundary layer was small enough to accurately resolve
it for all Reynolds numbers. The computed thicknesses of the boundary layers for
all cases were very close to the estimates given in table 1. The tolerance used for the
iterative conjugate gradient solvers of the pressure (for modes other than 0) was less
than 10−5 for most of the simulations, whereas the corresponding tolerance for the
velocities was always set to 10−7. Overall in all simulations, mass conservation was
always satisfied to below 10−6 in the average value of the divergence and to 10−4 in
L2 norm. The momentum conservation was also globally conserved to 10−5.

A second-order mixed stiffly stable scheme was used for the time integration of
the equations and the time steps used for all simulations are summarized in table
2. As a test for the time accuracy of the simulations, the Re = 300 simulation was
performed as follows: a time step of 0.005 was used until a single-frequency limit
cycle was obtained. Then, the time step was reduced to 0.0025 and the simulation
was continued and the Strouhal number was measured again with the new time step.
It was found that the difference in the value of the Strouhal number was less than
0.1%. Since this difference is fairly small, the criteria for the selection of the time step
for each Re were dominated almost entirely by issues relevant to numerical stability
(i.e. the CFL condition) rather than accuracy. In addition, the time step used for the
high Reynolds number simulations was at least an order of magnitude smaller than
the time scales corresponding to the highest frequencies of the flow, as discussed in
the following sections.

The flow past a sphere was investigated numerically, and computational results
are presented for Reynolds numbers from Re = 25 to 1000 using direct numerical
simulation (DNS) based on spectral-type methods. The results are organized in
increasing Reynolds number order, in the following way: in the first of the following
sections, the low Reynolds number axisymmetric flow results are presented, whereas
the next subsection contains the early transitional results between Reynolds number
212 and 270. Direct simulations that correspond to flow with vortex shedding, from
Re = 285 to 1000 are presented last. Most of the results presented here are reported
in Tomboulides (1993).
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Figure 3. (a) Wake length and (b) separation angle with respect to Reynolds number.

3. Axisymmetric flow
Our simulations reveal that the flow past a sphere is axisymmetric up to a Reynolds

number of approximately 212. Results from axisymmetric numerical simulations up
to Re = 220 are shown in figures 3(a), and 3(b), where the wake length and separation
angle are plotted with respect to the Reynolds number. Both the wake length and the
separation angle are measured from the rear stagnation point of the sphere; the wake
length is normalized by the sphere diameter. It can be extrapolated from the figure
that a recirculation region does not exist below a Reynolds number of about 20.
Both quantities follow an approximately logarithmic relationship with the Reynolds
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Figure 4. Pressure coefficient Cp: (a) along the surface of the sphere, (b) along the axis, from the
rear end of the sphere.

number for Re greater than about 75, as previously observed by Fornberg (1988).
The results up to Re = 220 agree with the numerical results of Fornberg (1988) to
0.3–0.5% in terms of wake length, and up to 2% in terms of the drag coefficient. The
agreement with the experimental results of Taneda (1956) and Nakamura (1976) is
also good. The discrepancy in the values of the wake length for Re > 130 in figure
3(a) can be explained by the fact that Taneda (1956) has reported wake unsteadiness
above Re = 130, whereas our simulations and other experiments, e.g. Wu & Faeth
(1993) and Magarvey & Bishop (1965), find the flow to be steady and axisymmetric
up to Re ≈ 210. Taneda’s wake length results are used for comparison with our
numerical results only because they are the only experimental results where wake
length measurements are reported.

Another interesting feature of the flow is the pressure coefficient, defined as

Cp =
p− po
1
2
ρU2

o

, (3.1)

where po and Uo are the pressure and the velocity of the incoming flow at infinity. The
distribution of Cp along the surface of the sphere is plotted in figure 4(a) for various
values of the Reynolds number, and in figure 4(b) along the streamwise direction,
starting from the rear end of the sphere. The detailed values of the pressure coefficient
Cpb at the rear end of the sphere (base pressure coefficient) for different Reynolds
number are plotted in figure 5.

4. Transition to non-axisymmetric flow
According to our simulations, at approximately Re = 212 the flow past a sphere

undergoes a transition to three-dimensionality through a regular bifurcation. The
most unstable azimuthal mode is m = 1. This first transition has zero frequency asso-
ciated with it, in agreement with Natarajan & Acrivos (1993), who report results of
linear stability analysis on this flow. Three-dimensional simulations were performed
at Reynolds numbers 200, 220, 250, 270, 285, and 300. For all simulations, the axisym-
metric steady flow was computed first. This flow was used as an initial condition for a
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Figure 6. (a) Time history of m = 1 of uφ at z = 1D, r = 0.2D.
(b) As (a) but in log-linear coordinates.

three-dimensional simulation, together with a perturbation of total energy 10−8 in the
first m = 1 azimuthal mode. This perturbation was random, so that the initial energy
in the whole eigenspectrum of mode m = 1 was guaranteed. The initial condition was
then marched in time, and the energy of all azimuthal modes was tracked in time.

From the six cases mentioned above, only at Re = 200 does the energy of the first
mode decay in time, and that flow eventually returns to axisymmetry. For Re > 220,
the m = 1 mode is always unstable. In figure 6(a), the time history of the azimuthal
velocity uφ of the first Fourier mode is plotted at a point in the near wake, showing the
final exponential decay of the first mode for Re = 200, and its exponential growth at
the same point for Re = 220. The same plot, in logarithmic versus linear coordinates,
is given in figure 6(b), where the linear part of the decay (or growth) can be observed
more easily. The fact that the small initial perturbation in the m = 1 mode grows
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exponentially after the effect of the initial conditions is washed out implies that the
first transition of the flow past a sphere is a ‘linear’ transition, in contrast to prototype
wall-bounded flows (i.e. in a channel or pipe), where finite-amplitude effects give rise
to transition.

In figure 7 we plot a comparison of our numerical results of the growth rate of
this mode and the results of Natarajan & Acrivos (1993); the growth (or decay) rates
were measured for each case from the slope of the straight line segment in log-linear
coordinates. The first instability occurs at Re = 210 as reported by Natarajan &
Acrivos (1993), and at approximately Re = 212 for the current numerical results; the
two values differ by less than 1%. The growth rates found by the two methods differ
by a maximum of about 5%. Results from a simulation at Re = 250, are shown in
figures 8(a) and 8(b), where the time history of the m = 1 mode of the azimuthal
velocity is plotted at a point in the near wake of the sphere. After the stages of
exponential growth (associated with the linear mode) and nonlinear saturation, a
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(b)

Figure 9. (a) Isocontours of uz , ur , uφ, for the unstable m = 1 mode at Re = 250, from DNS.
(b) Isosurfaces of streamwise vorticity.

three-dimensional steady-state solution is finally achieved. In addition, the shape of
the m = 1 mode during the stages of ‘linear growth’ (see figure 8(b)) is in remarkable
agreement with the least stable m = 1 mode shape as reported by Natarajan & Acrivos
(1993). In figure 9(a) we plot isocontours of the streamwise, radial and azimuthal
velocities associated with the m = 1 mode at Re = 250. The same isocontours as
calculated by linear stability are given by Natarajan & Acrivos (1993) and are very
similar to the ones shown in figure 9(a).
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The characteristics of the resulting steady flow field, which exists and is stable up to
a Reynolds numbers of approximately 270, correspond to that of the ‘double-thread’
wake, reported in falling sphere experiments (Magarvey & Bishop 1965), which exists
between Reynolds numbers of 210 and 270. The double-thread wake consists of
two opposite-sign streamwise vortices which extend to infinity and appear in the
experiment as two dye threads emanating from the end of the recirculation region.
It is also characterized by a loss of axisymmetry in the path of the falling sphere
(Magarvey & Bishop 1965). The computed three-dimensional steady flow field for
Re = 250 is shown in figure 9(b), in terms of streamwise vorticity isocontours. The
dark and light colours specify values of streamwise vorticity, equal in magnitude but
opposite in sign respectively. The three views shown in figure 9(b) differ by 90◦ with
respect to one another. It can be observed from this plot that the flow is symmetric
around a plane that includes the axis of symmetry, but it is not axisymmetric. This
planar symmetry is also maintained at higher Reynolds numbers. In experiments on
this flow, the plane of symmetry is sensitive to external disturbances which control its
actual location. In the simulations, the fact that the initial perturbation of the m = 1
azimuthal mode is real fixes the phase of this mode and determines the location of
the symmetry plane.

During the early stages of the first transition, an oscillatory subdominant mode
is observed, together with the dominant zero-frequency m = 1 mode. This second
m = 1 mode decays for all Re 6 270 and only the first dominant mode exists in
the later stages of the transition below that Reynolds number. The existence of
such a mode was first reported in the linear stability analysis study of Natarajan &
Acrivos (1993). From their work, it is evident that there exist two eigenvalues, one
with zero and another one with non-zero frequency, which are well separated from
the rest of the spectrum of the first azimuthal mode m = 1. The former eigenvalue
crosses the imaginary axis at Re = 210, whereas the latter, always with respect to
the base axisymmetric flow, becomes supercritical at Re = 277.5. The magnitudes of
the eigenvalues, for both of these modes, are given in Natarajan & Acrivos (1993)
for the range 160 6 Re 6 300. In figure 10, we plot the time history of the m = 1
azimuthal component of the velocity at location (z = 2D, r = 0.3D) in the wake of
the sphere for Reynolds numbers between 200 and 300. All simulations started with
the same type and magnitude of perturbation in the m = 1 azimuthal mode added to
the corresponding steady axisymmetric flow field. It can be observed from this figure
that oscillations with a characteristic frequency develop from the initial conditions
and decay for Re 6 270, whereas they grow for Re > 285. The approximate values of
the frequencies for each of these cases are given in table 3 and are in reasonably good
agreement with the corresponding values reported in Natarajan & Acrivos (1993) for
the subdominant mode, also given in the table.

In order to isolate the subdominant oscillatory mode, it is necessary to subtract the
dominant mode from the time history of the m = 1 mode, which contains both of
them. This was accomplished by subtracting a function of the form α(eσt − 1) from
the total time trace, where σ is the measured dominant-mode growth rate, and α is a
locally measured amplitude. For example, in figure 11(a), we plot the time history of
the m = 1 azimuthal velocity component at point (z = 2D, r = 0.3D) for Re = 300,
indicating the possible coexistence of two modes, one monotonically increasing in
amplitude and a second oscillatory one. The measured value of the growth rate of
the dominant mode for Re = 300 is 0.178, and the time variation of this mode only
is shown as a dotted line in the same plot. The resulting time trace after subtracting
the second curve from the first is shown in figure 11(b), demonstrating the increasing
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Figure 10. Time history of the m = 1 mode of uφ at (2.0D, 0.3D) vs. Re.

Re 200 220 250 270 300

StL (present work) 0.1178 0.1154 0.1132 0.1128 0.1121
StL (Natarajan & Acrivos 1993) 0.1181 0.1157 0.11365 0.11305 0.11335

Table 3. Frequencies StL of subdominant m = 1 azimuthal mode, linear stage.

amplitude of the oscillatory mode. The growth rate of this mode can only be measured
approximately; however it is close to the values reported in Natarajan & Acrivos
(1993) for the whole range of Reynolds numbers between 200 and 300. In fact, this
growth rate with respect to the base axisymmetric flow, when non-dimensionalized
using D/Uo, was found to depend approximately linearly on (Re − Re2)/Re2, where
Re2 is the critical Re for the second transition (approximately equal to 277.5), with a
proportionality constant between 0.7 and 0.9. Ormières et al. (1998) found the growth
rate for this oscillatory mode to behave as 0.9ν(Re− Re2)/D

2; however, their results
are with respect to the steady three-dimensional flow and not the base axisymmetric
flow at Re = 300.

For all Reynolds numbers below Re = 270, the flow past a sphere reaches a
steady-state solution. Moreover, when the flow is perturbed from that steady state, it
returns back to that state after undergoing oscillations of decaying amplitude. The
frequency associated with these oscillations is higher than the corresponding early
linear frequency reported in table 3. A comparison of the two ‘branches’ of frequencies
is given in figure 12 for 200 6 Re 6 300, where the ranges of stability are also noted.
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Frequencies are non-dimensionalized with the diameter of the sphere and the free-
stream velocity (St = fD/Uo). The lower branch corresponds to the early stages of
transition, with respect to the base axisymmetric flow, whereas the upper branch is
the frequency with which the flow returns to steady state (up to Re 6 270) after being
perturbed from the three-dimensional steady-state solution. It is interesting to note
that vortex shedding occurs only after the oscillatory ‘linear’ mode becomes unstable
(between 270 6 Re 6 285). Also, it seems that the shedding frequency at Re = 285
and Re = 300 does not depart in a dramatic way from the upper branch after the
second transition to vortex shedding occurs. The characteristics of the flow after the
transition to a vortex shedding state are given in the next section. The details of
the flow during the low-amplitude oscillations without shedding were not investigated
further, since the amplitude of these oscillations was below 10−5 and it was practically
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impossible to extract and distinguish this oscillatory subdominant m = 1 mode from
the non-oscillatory unstable m = 1 mode at the same Re.

For 220 6 Re 6 270, the decay rates at which the flow returns to a time-independent
state are smaller than the corresponding decay rates of the linear subdominant mode.
This might be the reason for low-amplitude sustained oscillations without distinct
vortex shedding, often reported in experiments below a Reynolds number of 270.
It might be that incoming flow noise can trigger oscillations which seem to be
self-sustained because of their very low decay rate. Such wave-like oscillations have
been reported in the experiments of Möller (1938) for Re > 200, in the falling
sphere experiments of Magarvey & Bishop (1965) for 270 6 Re 6 290, and in the
experiments of Sakamoto & Haniu (1990, 1995) for Re < 300.

5. Transition to unsteady flow
The flow past a sphere is known experimentally to result in a periodic (and

eventually chaotic) wake as the Reynolds number increases. The second transition
that leads to a time-dependent solution occurs between Re = 270 and Re = 285,
according to our direct simulations. This value is considerably higher than the
corresponding critical Reynolds number for the flow past a cylinder which is only
40. Direct numerical simulations were performed for Reynolds numbers 285, 300, 500,
and 1000.

5.1. Single-frequency vortex shedding: Re = 285–300

The flow at 285 6 Re 6 300 reaches a time-periodic final state with vortex shedding,
and the Strouhal number associated with this shedding is plotted in figure 12. The
basic wake structure, which consists of a succession of interconnected vortex loops, is
similar to that observed in visualization experiments like those of Magarvey & Bishop
(1961), Achenbach (1974) and Sakamoto & Haniu (1990). A plot of the drag coefficient
for Re = 300 is given in figure 13(a); the drag coefficient increases from 0.6461 for
the steady axisymmetric flow at the same Reynolds number up to an average value
of 0.6714 after the vortex shedding process is fully developed. The power spectrum of
the history of the drag coefficient is plotted in figure 13(b). The flow at Re = 285 and
300 maintains planar symmetry around the plane on which the shedding process is
initiated, even though it has lost its axial symmetry. To demonstrate this, isosurfaces
of constant streamwise vorticity are plotted in figure 14, which show that the vortex
loops are always shed from the sphere with the same orientation. The dark and light
colours denote positive and negative streamwise vorticity of the same magnitude,
respectively. This figure may be compared with experimental and numerical results
reported in Johnson & Patel (1999). In particular, flow visualization results shown in
figure 39(a, b) of their paper are in very good agreement with figure 14.

Further downstream in the wake, the only frequency present is the non-dimensional
shedding frequency (0.136 at Re = 300) and its superharmonics as shown in figures
15(a) and 15(b), where the time history of the azimuthal velocity component and its
power spectrum are plotted for a point 5.75D downstream from the sphere.

Also, time histories of the three velocity components are plotted for two points in
the near wake at z = 1D, r = 0.2D and at azimuthal locations which differ by 67.5◦.
The streamwise component is plotted in figure 16(a), the radial component in figure
16(b), and the azimuthal component in figure 16(c). As can be observed from these
figures, the amplitude of the waveform of the fluctuating velocities stays constant in
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Figure 13. (a) Time history of the drag coefficient Cd and (b) its power spectrum, Re = 300.

time for the two points, suggesting that the hairpin vortices are always shed with the
same orientation from the sphere.

Because of the planar symmetry observed in the shedding process, the time-averaged
flow at Reynolds numbers 285 and 300 is three-dimensional and not axisymmetric.
The streamwise velocity along the axis for the average flow is plotted in figure 17(a),
whereas the same plot for the axial RMS velocity is given in figure 17(b). The end
of the recirculation region along the axis, for the time-average flow, is at 1.3745
diameters downstream from the rear end of the sphere for Re = 285, and at 1.3478
diameters for Re = 300. A comparison of the computed average streamwise velocity
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Figure 14. Isosurfaces of streamwise vorticity for flow past a sphere at Re = 300.

along the centreline for Re = 285 and 300 and the experimental results of Wu &
Faeth (1993) for Re = 280 is also given in figure 17(a). From figure 17(b), it can
be observed that there appears to be a global maximum of the RMS streamwise
velocity very close to the end of the recirculation region for Re = 300 and a local
maximum for the Re = 285 case. The points correspond to values reported by Wu
& Faeth (1993) for Re = 280, which in their paper are normalized by the average
streamwise velocity. As can be seen from the figure, there is reasonable agreement
for all z except very close to the sphere, where the average streamwise velocity is
very low. This leads to significant deviations in the near wake which are probably
due to normalization. In addition, the shape of the RMS curve and the location of
its maximum for Re = 285, at approximately 5 diameters downstream of the sphere,
agree with results in Ormières et al. (1998) and Provansal & Ormières (1998), who
report the energy of the fluctuation as function of z/D for this Re range.

It is of interest to note that Wu & Faeth (1993) reported both the first and the
second bifurcation of flow past a sphere at approximately the same Re obtained by
linear stability analysis (Natarajan & Acrivos 1993), and by the direct numerical
simulations reported here. Ormières et al. (1998) on the other hand, who focused on
the second transition, report an interesting observation in the discussion of figure 4 in
their paper, which may imply the presence of a convectively unstable oscillatory mode
before the appearance of the second absolute instability at approximately Re = 280.
They report that when the flow is forced upstream with random noise, even for Re
below the second transition, the fluctuation energy first grows downstream and then
decays in a way very similar to the results plotted in figure 17(b). This may indicate
the existence of a convectively unstable mode which becomes absolutely unstable after
the second critical Re is reached; this, however, is a subject for further investigation.

5.2. Higher Reynolds number vortex shedding: Re = 500–1000

A numerical simulation was performed at Re = 500, starting from steady axisymmetric
flow by imposing a small three-dimensional disturbance on the m = 1 azimuthal mode.
The flow quickly becomes three-dimensional and results in vortex shedding (see figure
18). The wake structure is similar to the one observed at Re = 300, but as is evident
from figure 18 the vortex loops are shed from the sphere with different orientation.
The planar symmetry observed at Re = 300 is not preserved at Re = 500. This is
also evident from figure 19(a–c) and in particular when compared with the equivalent
figures for Re = 300 in figure 16(a–c). Points A and B are at the same z, r location
but their azimuthal location differs by 90◦. It can be observed that for Re = 500
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Figure 15. (a) Time history of uφ and (b) its power spectrum at z = 5.75D, r = 0.3D,Re = 300.

the velocities at the two points oscillate around the same values, in contrast to what
happens at Re = 300. This would imply that the time-average flow for Re = 500 is
axisymmetric, in contrast to what is observed below Re = 300, where the average
flow is three-dimensional; this phenomenon corresponds to an increase of symmetry
in the average flow as Re increases.

This transition from a one-frequency flow to an almost chaotic system occurs
between Re = 300 and 500 in our simulations, and is reported to occur at around Re =
420 by Sakamoto & Haniu (1990, 1995). There seems to be a lower incommensurate
frequency associated with the loss of planar symmetry which is approximately equal



Transitional flow past a sphere 65

(a)

0 50 100 150

Time

uz

–0.3

–0.2

–0.1

0

0 50 100 150

Time

–0.08

–0.06

–0.04

–0.02

0

0.02

0.04
(b)

ur

Point B

Point A

Point B

Point A

(c)

0 50 100 150

Time

Point B

Point A–0.08

–0.06

–0.04

–0.02

0

0.02

uφ

Figure 16. Time history of (a) uz (b) uz and (c) uφ at (1.0D, 0.2D), Re = 300.

to 0.045, and has to do with the irregular rotation of the separation point azimuthally
around the rear part of the sphere, leading to the more complicated wake pattern
observed in figure 18. Even though the vortex-loop wake structure at Re = 500 is
quite distorted by the slow rotation of the separation point, the flow is still in an early
transitional state and no small-scale structures are present.

The simulation at Re = 500 was carried out for a total of 200 time units, and only
the last 120 units, which were in a statistically steady state, were used for evaluation
of frequencies in power spectra. Time spectra at Re = 500 have pronounced peaks
at the Strouhal number associated with the shedding, which is equal to 0.167 (the
blocking factor was 1.2%). This frequency was dominant at all locations downstream
from the sphere, and was obtained by averaging the values obtained at several history
points in the near wake, which were not significantly different from each other. Figure
20(a) shows the time variation of the axial velocity component at z = 2.0, r = 0.3 and
its power spectrum. There is a dominant peak at the Strouhal number 0.167. A power
spectrum at another downstream point, z = 2.5, r = 0, plotted in figure 20(b), shows
the existence of the lower frequency, approximately equal to 0.045, and the Strouhal
frequency. Even though the lower frequency of the order of 0.045 is present in many
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Figure 18. Isosurfaces of streamwise vorticity for flow past a sphere at Re = 500.

of the power spectra, longer time traces are needed for a more accurate evaluation of
this frequency.

In his experiments, Achenbach (1974) reports two values for the Strouhal number at
Re = 500, corresponding to two different spheres and blocking ratios; the first is about
0.163 and corresponds to a blockage of about 0.6% and the second is about 0.174 and
corresponds to blockage of about 2.6%. His experiments were performed in a round
pipe, in a similar way to our simulations. Kim & Durbin (1988) report a Strouhal
number about 0.171 for Re = 500 and their blockage ratio is less than 0.01% for this
Reynolds number; their experiments were performed in a wind tunnel of rectangular
cross-section. Finally, Sakamoto & Haniu (1990) find a Strouhal number between
0.175 and 0.18 for Re = 500.

Experimentally, smaller scales appear and a more chaotic flow occurs when the
Reynolds number exceeds 800. A direct simulation was performed at Re = 1000 using
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over 2.5× 106 degrees of freedom. The results from this simulation reveal that small
scales are indeed present in the flow field and their origin is a Kelvin–Helmholtz-
like instability of the cylindrical shear layer that results from the separation of the
boundary layer on the sphere. Visual evidence of the presence of roll-up of the shear
layer and the appearance of small scales is shown in figure 21 in terms of isocontours
of azimuthal vorticity, in particular in the lower half of the figure. The large-scale
wake structure is similar to that at Re = 500; lower frequencies of the same order
as at Re = 500 are observed, even though they have not been accurately determined
as longer time traces are needed. The small scales associated with the shear-layer
instability, cause a rapid distortion of the large vortex structures and eventually
render the wake turbulent.

The simulation at Re = 1000 was advanced for a total of 270 time units, starting
with initial conditions from the flow at Re = 500, and was time averaged for the
last 130 time units, after it was verified that it had reached a statistically steady
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Figure 21. Isocontours of azimuthal vorticity for flow past a sphere at Re = 1000.

state. At Re = 1000, the Strouhal number has increased to St1 = 0.195 (see figure
22a). At points in the near wake of the sphere, where the roll-up of the shear layer
appears to occur, a second higher frequency is observed at St2 ≈ 0.35 (these values
have been determined, for all cases, by averaging the frequencies observed at several
history points in the near wake), as can be seen in figure 22(b). Both values are in
agreement with the Strouhal numbers reported in experiments. In the experiments of
Kim & Durbin (1988), the lower frequency is found to be between 0.187 and 0.202
at Re = 1000; the higher frequency mode is measured to be between 0.33 and 0.37
(figure 2 in Kim & Durbin 1988). As mentioned in § 1, Achenbach (1974) regarded
all the observed frequencies as being due to vortex shedding and only measured the
higher frequency mode. His reported value of 0.39 is close to our measured value of
0.35 for this second mode. The values reported by Sakamoto & Haniu (1990, 1995),
between 0.195 and 0.205, for the vortex shedding Strouhal number, and 0.29 and 0.34
for the second higher frequency mode are also in agreement with our results.

The flow at Re = 1000 was simulated until a statistically steady state was reached
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Figure 23. (a) Average and (b) RMS streamwise velocity along the axis for Re = 1000.
Experimental data are from Wu & Faeth (1993).

and then was time averaged for 130 time units, which corresponds to about 30
shedding periods. A plot of the average streamwise velocity along the centreline is
given in figure 23(a) together with the experimental data of Wu & Faeth (1993) for
Re = 960. It can be seen that the length of the recirculation is approximately 1.7
diameters from the rear end of the sphere, which agrees well with the experimental
results for Re = 960. The root mean square of the streamwise velocity along the axis is
given in figure 23(b) together with measured values from Wu & Faeth (1993). Again,
because of the normalization of the RMS velocities in the data of Wu & Faeth (1993)
with the mean streamwise velocity, which is very low in the near wake, a small error
in the local measured mean velocity results in a much larger error in the normalized
RMS value; further downstream the agreement is improved. The computed maximum
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of the streamwise RMS velocity along the axis is found to be very close to the end
of the recirculation region of the average flow. This was found to be the case for
lower Re as well (i.e. Re = 300) and thus it seems that this phenomenon is rather
independent of the Reynolds number.

The time-average location of the separation circle at Re = 1000 is found to be at
102◦ from the front end of the sphere. The separation circle at Re = 300 was found to
be at 111◦. Radial profiles of the streamwise and radial velocities of the time-average
flow at Re = 1000 at different z downstream stations are plotted in figure 24(a).
Radial profiles of the RMS values of the streamwise and radial velocity components
for different streamwise locations are shown in figure 24(b).

In an attempt to examine the coherence of the shedding process in the azimuthal
direction, histories of flow quantities at four points located at 2.7 diameters down-
stream of the sphere were traced in time. The points are at the same z = 2.7 and
r = 0.3 location but their azimuthal location differs by 90◦, i.e. φ1 = 0◦, φ2 = 90◦,
φ3 = 180◦, and φ4 = 270◦. Auto- and cross-correlation functions were calculated from
the time traces at points 1, 2, 3, and 4 as

Rij(τ) = lim
T→∞

1

T

∫ T

0

ui(t) uj(t+ τ) dt, (5.1)

where the indices specify the point. The autocorrelation function is defined as

Rii(τ) = lim
T→∞

1

T

∫ T

0

ui(t) ui(t+ τ) dt, (5.2)

where ui and uj are the instantaneous fluctuating values of time-traced quantities at
points i and j, respectively. The product of the autocorrelation functions of signals
ui and uj for τ = 0 is used for the normalization of the cross-correlation coefficient
Rij(τ):

Rij(τ) =
Rij(τ)

(Rii(0)Rjj(0))1/2
. (5.3)
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Figure 25. Autocorrelation coefficient R11(τ), and cross-correlation coefficients R12(τ), R12(τ), and
R12(τ), at Re = 1000 (from bottom to top).

The auto- and cross-correlation coefficients are plotted for the streamwise velocity
component, uz , in figure 25 for the points 11, 12, 13, and 14, respectively from
bottom to top. It can be observed that the phase angle between the time traces at
the four points is approximately equal to the difference in their angular position in
the azimuthal direction, as suggested by Achenbach (1974), possibly indicating some
rotation mechanism in the azimuthal direction. However, more work is needed to
understand this process.

6. Summary and concluding remarks
The viscous incompressible flow past a stationary sphere was investigated using

numerical simulations. The focus of the investigation was to identify the transitions
that the flow undergoes with increasing Reynolds number, as well as their underlying
physical mechanisms. The range of Reynolds number investigated was from Re = 25
to 1000 using direct numerical simulation. A mixed spectral element/Fourier spectral
method has been used, which is specifically designed for the study of three-dimensional
flows in axisymmetric geometries. A special Jacobi-type polynomial is used on the axis
of symmetry for the efficient treatment of the ‘pole’ problem, leading to an efficient and
spectrally accurate way of removing geometrical singularities. This method has been
verified and has been optimized for both serial and parallel computing environments.

This investigation started with the simulation of steady axisymmetric flow past a
sphere in the low Reynolds number range. Flow parameters like wake length, sepa-
ration angle and drag coefficient were calculated and were found in good agreement
with other axisymmetric simulations and experimental results. According to the cur-
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rent simulations, the first transition of this flow is a linear regular bifurcation and
results in a three-dimensional steady-state flow field, similar to experimental results on
falling spheres and linear stability analyses by Natarajan & Acrivos (1993). Numerical
results from the early stages of this linear transition were compared with results from
linear stability analysis in terms of growth rates and qualitative shape of the unstable
eigenmodes; results from these two methods are found to be in very good agreement.
More recent numerical simulation results (Johnson & Patel 1999) agree very well with
our results for Re 6 300.

Therefore, in contrast to the case of the flow past a cylinder, it is the second
transition that leads to time dependence and vortex shedding for the flow past a
sphere. The basic wake structure consists of a succession of interconnected vortex
loops which, for low Reynolds numbers, are shed with the same orientation from
the sphere; this results in planar symmetry which is observed in the flow up to a
Reynolds number between 350 and 450. Simulations for Re = 500 reveal that this
planar symmetry is lost and that vortices are shed with different chaotic orientation.
At even higher Reynolds numbers, small scales appear in the flow, because of the
Kelvin–Helmholtz instability of the cylindrical shear layer emanating from the sphere,
and the wake is rendered turbulent. It is also found that, even at high Reynolds
numbers where the wake is in a turbulent state, a large-scale wake structure is still
evident. Wake structure, Strouhal number, drag coefficient and other quantitative
characteristics of the flow are in good agreement with reported experimental work.

This work was partially supported by the ONR and DARPA. The authors would
like to thank Professor Akiva Yaglom for comments and suggestions on, and interest
in, this work.
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